On the Conflicting Pictures of Magnetism for the Frustrated Triangular Lattice Antiferromagnet CuFeO₂

Myung-Hwan Whangbo* and Dadi Dai

Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204

Kwang-Soon Lee

Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-Do, South Korea 422-743

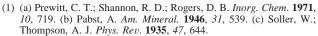
Reinhard K. Kremer

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany Received November 29, 2005. Revised Manuscript Received January 17, 2006

The magnetic structures of the triangular lattice antiferromagnet $CuFeO_2$ below 14 K are described by an Ising model despite the fact that its high-spin Fe^{3+} (d⁵) ions (S=5/2, L=0) cannot have a uniaxial magnetic moment. To resolve this puzzling picture of magnetism, we estimated the relative strengths of various spin-exchange interactions of $CuFeO_2$ by performing a spin dimer analysis and then determined the relative stabilities of a number of ordered spin states of $CuFeO_2$. Our calculations show that, in terms of a Heisenberg model, the noncollinear 120° spin arrangement predicted for a triangular lattice antiferromagnet is more stable than the collinear four-sublattice antiferromagnetic structure observed for $CuFeO_2$ below 11 K. To find a probable cause for stabilizing the collinear spin alignment along the c axis below 14 K, we considered the defect ions Fe^{2+} and Cu^{2+} of the $CuFeO_2$ lattice created by oxygen deficiency and oxygen excess, respectively. Our electronic structure analysis suggests that these defect ions generate uniaxial magnetic moments along the c axis and hence induce the surrounding Fe^{3+} ions to orient their moments along the c axis.

1. Introduction

The crystal structure of the delafossite CuFeO₂ consists of FeO₂ layers that are made of edge-sharing FeO₆ octahedra (Figure 1a); these layers are bridged by Cu atoms to form linear O-Cu-O dumbbells perpendicular to the layers (Figure 1b). Mössbauer studies of CuFeO2 show its Fe atoms are present as Fe³⁺ (d⁵) ions, and hence the Cu atoms are present as diamagnetic Cu⁺ (d¹⁰) ions. The studies also show that CuFeO2 becomes antiferromagnetically ordered below 14 K. Furthermore, the magnetic susceptibility studies³ of $CuFeO_2$ showed that the $Fe^{3+}(d^5)$ ions are in a high-spin state, and the antiferromagnetic coupling between the Fe³⁺ ions is dominant within rather than between FeO₂ layers. The triangular lattice of the magnetic Fe³⁺ ions in each FeO₂ layer is an archetypal spin lattice that causes geometric spin frustration.⁴ The frustrated nature of the magnetic properties of CuFeO₂ have been the subject of a number of studies.^{5–11}



^{(2) (}a) Muir, A. H., Jr.; Wiedersich, H. J. Phys. Chem. Solids 1967, 28, 65. (b) Muir, A. H., Jr.; Grant, R. W.; Wiedersich, H. Proceedings of the Conference on the Application of Mössbauer Effect, Tihany, Hungary, 1969.

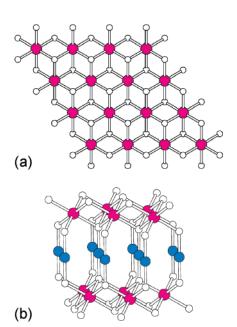


Figure 1. (a) Perspective view of an isolated FeO_2 layer made of edge-sharing FeO_6 octahedra. (b) Perspective view of two adjacent FeO_2 layers linked by O-Cu-O bridges. The Fe, Cu, and O atoms are indicated by red, blue, and white circles.

When the temperature is lowered, CuFeO₂ undergoes a phase transition from a paramagnetic state to an incommensurately

^{(3) (}a) Doumerc, J.-P.; Wichainchai, A.; Ammar, A.; Pouchard, M.; Hagenmuller, P. Mater. Res. Bull. 1986, 21, 745. (b) El Ataoui, K.; Doumerc, J.-P.; Ammar, A.; Fournès, L.; Wattiaux, A.; Grenier, J.-C.; Pouchard, M. J. Alloys Compd. 2004, 368, 79.

^{(4) (}a) Greedan, J. E. J. Mater. Chem. 2001, 11, 37. (b) Dai, D.; Whangbo, M.-H. J. Chem. Phys. 2004, 121, 672.

⁽⁵⁾ Mitsuda, S.; Yoshizawa, H.; Yaguchi, N.; Mekata, M. J. Phys. Soc. Jpn. 1991, 60, 1885.

ordered antiferromagnetic (AF) state at $T_{\rm N1} = 14$ K and then to a collinear four-sublattice AF state at $T_{\rm N2} = 11$ K.^{6,7} There is a thermal hysteresis in the 11 K transition, which indicates the phase transition is first-order. When placed in a magnetic field at a temperature below $T_{\rm N2}$, CuFeO₂ undergoes several phase transitions if the field is parallel to the c axis (i.e., perpendicular to the FeO₂ layer) but one phase transition if the field is perpendicular to the c axis.⁸ The occurrence of such ordered magnetic structures has been explained in terms of a two-dimensional (2D) Ising model.^{6,8-10} As recently pointed out by Petrenko et al., 11 however, the magnetic properties of CuFeO₂ above T_{N1} should be explained by a Heisenberg rather than an Ising model.

There are many compelling reasons why an Ising model is not self-consistent for CuFeO₂.11 This model predicts an anisotropic magnetic susceptibility above a three-dimensional (3D) ordering temperature $T_{\rm N1}$, but the magnetic susceptibility measured for single crystals of CuFeO2 is rather isotropic above $T_{\rm N1}$. 8,11-13 An Ising model is relevant for a magnetic system in which each of its spin sites has a uniaxial magnetic moment. However, a high-spin Fe³⁺ ion (S = 5/2, L = 0) in an octahedral environment cannot provide a uniaxial magnetic moment,14 because its orbital angular momentum is zero. The ordered spin arrangement of a triangular lattice antiferromagnet (TLA) predicted from a Heisenberg model is the (1/3, 1/3) superstructure (Figure 2a) in which each triangular plaquette has a noncollinear 120° spin arrangement.⁴ Indeed, this ordered spin structure is observed for the CrO₂ layers of the delafossites LiCrO₂ and CuCrO₂. 15 Therefore, it is puzzling why each FeO₂ layer of CuFeO₂ below $T_{\rm N2}$ does not adopt this spin arrangement expected for a TLA but instead adopts the collinear four-sublattice AF arrangement (Figure 2b)⁶ in which the magnetic moment at each Fe^{3+} site is parallel to the c axis. Recent attempts to explain the unusual magnetic properties of CuFeO2 are made on the basis of lattice distortions¹⁶ and correlated magnetoelectric/magnetoelastic phenomena.¹⁷ An important clue for resolving the conflicting pictures of magnetism for CuFeO₂ might lie in the observation that the stability of the collinear four-sublattice AF structure is sensitively affected by a small amount of point defects. 12,18 Namely, the collinear four-

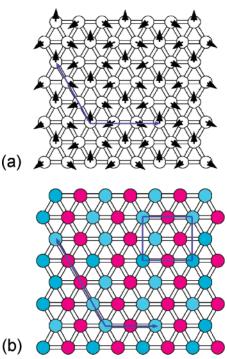


Figure 2. Magnetic superstructures of an FeO₂ layer: (a) noncollinear 120° magnetic structure, i.e., (1/3, 1/3) magnetic superstructure, where the small arrow at each spin site represents the spin moment. (b) Collinear foursublattice antiferromagnetic structure, i.e., (1/2, 1/4) magnetic superstructure, where the spin moments parallel and antiparallel to the c axis are distinguished by circles with two different colors and the rectangular box represents the smallest unit cell.

sublattice AF structure of CuFeO₂ disappears when a small number of nonmagnetic Al3+ ions are substituted for Fe3+ (i.e., 2%). The collinear four-sublattice AF structure is maintained in nonstoichiometric CuFeO₂₊ δ single crystals with either oxygen deficiency ($\delta \le 0$) or oxygen excess (δ > 0), but the phase-transition temperature T_{N2} is increased by oxygen deficiency, whereas it is decreased by oxygen excess.12 The oxygen deficiency generates Fe2+ ions, and the oxygen excess generates Cu²⁺ ions. It is crucial to understand how the presence of such defect ions can influence the stability of the collinear four-sublattice AF structure.

In the present work, we probe why an Ising model is required for explaining the ordered magnetic structures of CuFeO₂ below T_{N1} despite the fact that this model is not supported on the basis of electronic structure considerations. Our work is organized as follows: In section 2, we estimate the relative strengths of various spin-exchange parameters of CuFeO₂ that are consistent with its electronic structure. Using these parameters, we calculate in section 3 the total spin-exchange interaction energies of various 3D orderedspin arrangements of CuFeO₂ to find that the collinear foursublattice AF structure of an isolated FeO₂ layer is less stable than the (1/3, 1/3) superstructure in terms of a Heisenberg model. In section 4, we examine whether the defect ions Fe²⁺ and Cu²⁺ of the CuFeO₂ lattice generated by oxygen nonstoichiometry can provide a driving force for the Fe³⁺ ions to orient their moments along the c axis, thereby stabilizing the collinear four-sublattice AF structure below $T_{\rm N2}$. The important results of our work are summarized in section 5.

⁽⁶⁾ Mekata, M.; Yaguchi, N.; Takagi, T.; Sugino, T.; Mitsuda, S.; Yoshizawa, H.; Hosoito, N.; Shinjo, T. J. Phys. Soc. Jpn. 1993, 62,

⁽⁷⁾ Takeda, K.; Miyake, K.; Hitaka, M.; Kawae, T.; Yaguchi, N.; Mekata, M. J. Phys. Soc. Jpn. 1994, 63, 2017.

⁽⁸⁾ Ajiro, Y.; Asano, T.; Takagi, T.; Mekata, M.; Agura-Katori, H.; Goto, T. Physica B 1994, 201, 71.

⁽⁹⁾ Takagi, T.; Mekata, M. J. Phys. Soc. Jpn. 1995, 64, 4609

⁽¹⁰⁾ Petrenko, O. A.; Balakrisnan, G.; Lees, M. R.; Paul, D. McK.; Hoser, A. Phys. Rev. B 2000, 62, 8983.

⁽¹¹⁾ Petrenko, O. A.; Lees, M. R.; Balakrisnan, G.; de Brion, S.; Chouteau, G. J. Phys.: Condens. Matter 2005, 17, 2741.

⁽¹²⁾ Hasegawa, M.; Batrashevich, M. I.; Zhao, T.-R.; Takei, H.; Goto, T. Phys. Rev. B 2001, 63, 184437.

⁽¹³⁾ Terada, N.; Mitsuda, S.; Suzuki, S.; Kawasaki, T.; Fukuda, M.; Nagao, T.; Aruga-Katori, H. J. Phys. Soc. Jpn. 2004, 73, 1442.

⁽¹⁴⁾ Dai, D.; Whangbo, M.-H. Inorg. Chem. 2005, 44, 4407.

⁽¹⁵⁾ Collins, M. F.; Petrenko, O. A. Can. J. Phys. 1997, 75, 605.

⁽¹⁶⁾ Terada, N.; Mitsuda, S.; Ohsumi, H.; Tajima, K. J. Phys. Soc. Jpn. In

Kimura, T.; Lashley, J. C.; Ramirez, A. P. arXiv: cond-mat/0510701, http://xxx.lanl.gov/pdf/cond-mat/0510701.

⁽¹⁸⁾ Terada, N.; Mitsuda, S.; Prokes, K.; Suzuki, O.; Kitazawa, H.; Aruga-Katori, H. Phys. Rev. B 2004, 70, 174412.

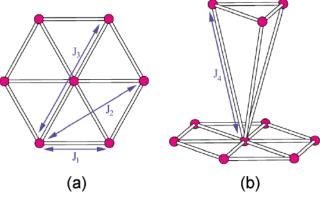


Figure 3. (a) Spin-exchange paths J_1 , J_2 , and J_3 within an FeO₂ layer. (b) Spin-exchange path J_4 between adjacent FeO₂ layers.

Table 1. Geometrical Parameters and $\langle (\Delta e)^2 \rangle$ Values Associated with the Spin-Exchange Interactions J_1 , J_2 , J_3 , and J_4 of CuFeO₂

interaction	geometrical parameters ^a	$\langle (\Delta e)^2 \rangle ({\rm meV^2})$
J_1	Fe-O-Fe	1570 (1.00) ^b
	$Fe \cdot \cdot \cdot Fe = 3.035 \text{ Å}$	
	\angle Fe-O-Fe = 96.6°	
J_2	Fe-O···O-Fe	32 (0.020)
	$Fe \cdot \cdot \cdot Fe = 5.257 \text{ Å}$	
	$O \cdot \cdot \cdot O = 2.706 \text{Å}$	
	$\angle \text{Fe-O} \cdot \cdot \cdot \text{O} = 99.9^{\circ}$	
J_3	Fe-O···O-Fe	50 (0.032)
	$Fe \cdot \cdot \cdot Fe = 6.070 \text{ Å}$	
	$O \cdot \cdot \cdot O = 3.035 \text{ Å}$	
	$\angle \text{Fe-O} \cdot \cdot \cdot \text{O} = 138.3^{\circ}$	
J_4	Fe-O-Cu-O-Fe	36 (0.023)
	$Fe \cdot \cdot \cdot Fe = 5.984 \text{ Å}$	
	O-Cu = 1.830 Å	
	\angle Fe-O-Cu = 120.5°	
	$\angle O$ -Cu-O = 180 $^{\circ}$	

 a All Fe–O = 2.033 Å. b The numbers in parentheses give the relative tendency for antiferromagnetic coupling.

2. Spin Dimer Analysis

In describing the magnetic properties of CuFeO₂ in terms of an Ising model, we have employed three intralayer spinexchange interactions J_1 , J_2 , and J_3 (Figure 3a) while neglecting the interlayer spin-exchange interaction J_4 (Figure 3b).^{6,9} We estimate the relative strengths of these interactions by performing spin dimer analysis on the basis of extended Hückel tight-binding (EHTB) electronic structure calculations.¹⁹ The spin dimers (i.e., the structural units made of two Fe³⁺ ions plus the oxygen atoms in their first coordinate spheres) leading to the J_1 , J_2 , J_3 , and J_4 interaction are depicted in Figure 4. These interactions are of the superexchange (SE) type involving Fe-O-Fe paths (i.e., J_1), the super-superexchange (SSE) type involving Fe-O···O-Fe paths within each FeO₂ layer (i.e., J_2 and J_3), and the SSE type involving Fe-O-Cu-O-Fe paths between adjacent FeO_2 layers (i.e., J_4). The important structural parameters describing these spin-exchange paths are listed in Table 1.

The spin-exchange parameter J is written as $J = J_{\rm F} + J_{\rm AF}$, where the ferromagnetic term $J_{\rm F}$ is positive and the antiferromagnetic term $J_{\rm AF}$ is negative. In general, $J_{\rm F}$ is very

small, so that the trends in the J values are well-approximated by those in the corresponding $J_{\rm AF}$ values. ¹⁹ In spin dimer analysis completed on the basis of EHTB calculations, the strength of an antiferromagnetic interaction between two spin sites is estimated by considering the antiferromagnetic spin exchange parameter $J_{\rm AF}^{19}$

$$J_{AF} \approx -\frac{\langle (\Delta e)^2 \rangle}{U_{eff}}$$
 (1)

where $U_{\rm eff}$ is the effective on-site repulsion that is essentially a constant for a given compound. The $\langle (\Delta e)^2 \rangle$ term is calculated by performing tight-binding electronic structure calculations for a spin dimer. Each Fe³⁺ ion of CuFeO₂ has five singly occupied d-block levels ϕ_{μ} ($\mu = 1-5$), i.e., five magnetic orbitals. Thus, the $\langle (\Delta e)^2 \rangle$ term is given by

$$\langle (\Delta e)^2 \rangle \approx \frac{1}{5^2} \sum_{\mu=1}^5 (\Delta e_{\mu\mu})^2$$
 (2)

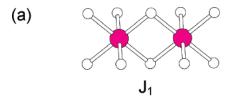
where $\Delta e_{\mu\mu}$ is the energy split that results when two magnetic orbitals ϕ_{μ} ($\mu=1-5$) on adjacent spin sites interact (Figure 5). Because $U_{\rm eff}$ is essentially a constant for a given compound, the trend in the $J_{\rm AF}$ values is determined by that in the corresponding $\langle (\Delta e)^2 \rangle$ values. For the spin-exchange interactions J_1-J_4 of CuFeO₂, we calculate the corresponding $\langle (\Delta e)^2 \rangle$ values using the spin dimers shown in Figure 4. The atomic parameters of Fe, Cu, and O used for our EHTB calculations²⁰ are summarized in Table 2. Table 1 summarizes the calculated $\langle (\Delta e)^2 \rangle$ values together with their relative values.

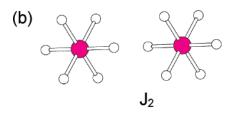
Table 1 reveals that the SE interaction J_1 is the strongest AF spin-exchange interaction in CuFeO₂. The intralayer SSE interactions J_2 and J_3 are much weaker than J_1 (by factors of approximately 50 and 30, respectively). This is in sharp contrast to the observation⁸ that, in order for the magnetic structures of CuFeO₂ below T_{N2} and under magnetic field to be described in terms of a 2D Ising model, J_2 and J_3 should be quite strong (i.e., $J_2/J_1 = 0.5$ and $J_3/J_1 = 0.75$). Furthermore, the interlayer SSE interaction J_4 is not negligible but is comparable in strength to the intralayer SSE interactions J_2 and J_3 . This is consistent with the finding that CuFeO₂ undergoes a 3D ordered magnetic structure below 14 K⁷ and that neutron-scattering experiments show a significant dispersion along the interlayer direction.²¹ For the interlayer interaction J_4 , the two O-Cu-O bridges linking the two FeO6 octahedra are crucial because our calculations lead to $\langle (\Delta e)^2 \rangle = 0$ in the absence of the Cu atoms in the spin dimer (Figure 4d). The magnetic orbitals of the spin dimer show that the $3d_{z^2}$, $3d_{xz}$, and $3d_{yz}$ of the bridging Cu atoms (with the local z axis taken along each O-Cu-O linkage) promote the interlayer SSE interaction J_4 .

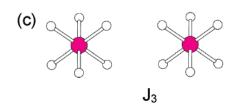
⁽¹⁹⁾ For recent reviews, see: (a) Whangbo, M.-H.; Koo, H.-J.; Dai, D. J. Solid State Chem. 2003, 176, 417. (b) Whangbo, M.-H.; Dai, D.; Koo, H.-J. Solid State Sci. 2005, 7, 827.

⁽²⁰⁾ Our calculations were carried out by employing the SAMOA (Structure and Molecular Orbital Analyzer) program package: Dai, D.; Ren, J.; Liang, W.; Whangbo, M.-H. SAMOA; http://chvamw.chem.ncsu.edu/, 2002.

⁽²¹⁾ Petrenko, O. A.; Fåk, B.; Bull, M. ISIS Experimental Report RB; 11734, 2001; ISIS: Chilton, U.K., 2001; www.isis.rl.ac.uk/isis2001/ reports.







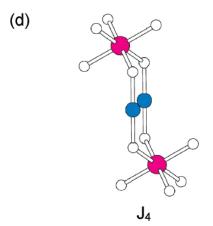


Figure 4. Spin dimers associated with the spin-exchange paths (a) J_1 , (b) J_2 , (c) J_3 , and (d) J_4 .

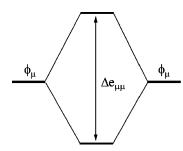


Figure 5. Interaction between two magnetic orbitals ϕ_u of a spin dimer leading to the energy split $\Delta e_{\mu\mu}$.

3. Ordered Magnetic Structure and Total **Spin-Exchange Interaction Energy**

In this section, we examine the total spin-exchange energies of various ordered magnetic structures of CuFeO2 in terms of a Heisenberg model by using the Freiser method, 19b,22 in which the total spin-exchange energy of an ordered magnetic structure is calculated under the assump-

Table 2. Exponents ζ_i and Valence-Shell Ionization Potentials H_{Ii} of Slater-Type Orbitals χ_i Used for Extended Hückel Tight-binding Calculation^a

atom	χi	H _{ii} (eV)	$\zeta_{\rm i}$	C^b	ζ'i	C'b
Fe	4s	-9.10	1.925	1.0		
Fe	4p	-5.32	1.390	1.0		
Fe	3d	-12.6	6.608	0.4038	2.618	0.7198
Cu	4s	-11.4	2.151	1.0		
Cu	4p	-6.06	1.370	1.0		
Cu	3d	-14.0	7.025	0.4473	3.004	0.6978
O	2s	-32.3	2.688	0.7076	1.675	0.3745
O	2p	-14.8	3.694	0.3322	1.659	0.7448

^a The diagonal matrix element H_{ii} is defined as $\langle \chi_i | H^{eff} | \chi_i \rangle$, where H^{eff} is the effective Hamiltonian. In our calculations of the off-diagonal matrix elements $H^{eff}=\langle\chi_i|H^{eff}|\chi_j\rangle,$ the weighted formula was used. $^{\it b}$ Contraction coefficients used in the double- ξ Slater-type orbital.

tions that spins adopt all possible directions in space (i.e., the classical spin approximation) and that the spin-exchange interactions are isotropic (i.e., a Heisenberg description). The classical spin approximation is best suited for a magnetic system made of spin-5/2 ions such as high-spin Fe³⁺ ions.

In a long-range ordered magnetic state i of a magnetic system, the spin sites $\mu (= 1, 2, ..., m)$ of its unit cell located at the coordinate origin (i.e., the lattice vector $\mathbf{R} = 0$) have mean spins σ_u^0 . At high temperatures, the spins are completely disordered so that $\sigma_u^0 = 0$ at all spin sites. As the temperature is lowered, an ordered spin arrangement may set in, thereby leading to nonzero σ_u^0 . For a magnetic solid with repeat vectors a, b, and c, the ordered spin arrangement is described by the spin functions $\sigma_u(\mathbf{k})$

$$\sigma_{\mu}(\mathbf{k}) = \frac{1}{\sqrt{M}} \sum_{\mathbf{R}} \sigma_{\mu}^{0} \exp(i\mathbf{k} \cdot \mathbf{R})$$
 (3)

where M is the number of unit cells in the magnetic solid, \mathbf{k} is the wave vector, and \mathbf{R} is the direct lattice vector.²³ The ordered magnetic state $\psi_i(\mathbf{k})$ (i = 1 - m) is then expressed as a linear combination of the spin functions $\sigma_{u}(\mathbf{k})$

$$\psi_i(\mathbf{k}) = C_{1i}(\mathbf{k})\sigma_1(\mathbf{k}) + C_{2i}(\mathbf{k})\sigma_2(\mathbf{k}) + \dots + C_{mi}(\mathbf{k})\sigma_m(\mathbf{k})$$
 (4)

To determine the energy $E_i(\mathbf{k})$ of the state $\psi_i(\mathbf{k})$ and the coefficients $C_{\mu i}(\mathbf{k})$ ($\mu = 1 - m$), one needs to evaluate the spin-exchange interaction energies $\xi_{\mu\nu}(\mathbf{k})$ between every two spin functions $\sigma_u(\mathbf{k})$ and $\sigma_v(\mathbf{k})$

$$\xi_{\mu\nu}(\mathbf{k}) = -\sum_{\mathbf{R}} J_{\mu\nu}(\mathbf{R}) \exp(i\mathbf{k}\cdot\mathbf{R})$$
 (5)

and diagonalize the resulting interaction matrix $\Xi(\mathbf{k})$

$$\Xi(\mathbf{k}) = \begin{bmatrix} \xi_{11}(\mathbf{k}) & \xi_{12}(\mathbf{k}) & \dots & \xi_{1m}(\mathbf{k}) \\ \xi_{21}(\mathbf{k}) & \xi_{22}(\mathbf{k}) & \dots & \xi_{2m}(\mathbf{k}) \\ \dots & \dots & \dots & \dots \\ \xi_{m1}(\mathbf{k}) & \xi_{m2}(\mathbf{k}) & \dots & \xi_{mm}(\mathbf{k}) \end{bmatrix}$$
(6)

For a given set of spin-exchange parameters $J_{\mu\nu}$, one can determine the value of **k** that leads to the lowest energy E_m

⁽²³⁾ Given the lattice vector written as $\mathbf{R} = n_a \mathbf{a} + n_b \mathbf{b} + n_c \mathbf{c}$, where n_a , n_b , and n_c are integers, and the wave vector \mathbf{k} written as $\mathbf{k} = x_a \mathbf{a}^* + x_b \mathbf{a}^*$ $x_b \mathbf{b}^* + x_c \mathbf{c}^*$, where \mathbf{a}^* , \mathbf{b}^* , and \mathbf{c}^* are the reciprocal vectors and x_a , x_b , and x_c are dimensionless numbers, the $exp(i\mathbf{k}\mathbf{R})$ term of eq 3 becomes $\exp[i2\pi(x_an_a + x_bn_b + x_cn_c)]$. For convenience, we denote **k** by showing only its dimensionless components, i.e., $\mathbf{k} = (x_a, x_b, x_c)$.

Table 3. Pairs of Spin Sites $(\mu-\nu)$ $(\mu,\nu=1,2,3)$ Leading to the Spin-Exchange Spin interactions J_1-J_4

	$(\mu - \nu)$	
path	within a unit cell	between unit cells
J_1		(1-1), (2-2), (3-3)
J_2		(1-1), (2-2), (3-3)
J_3		(1-1), (2-2), (3-3)
J_4	(1-2), (1-3)	(1-2), (1-3), (2-3)

Table 4. Nonzero Contributions to the Matrix Elements $\xi_{\mu\nu}(\mathbf{k})$ from the Various Spin-Exchange Paths

μ	ν	cell ^a	Fe···Fe (Å)	contribution to $\xi_{\mu\nu}(\mathbf{k})$
1	1^b	[-2, -2, 0]	6.070	$-J_3 \exp(-i4\pi x_a - i4\pi x_b)$
		[2, 2, 0]	6.070	$-J_3 \exp(i4\pi x_a + i4\pi x_b)$
		[-2, -1, 0]	5.257	$-J_2 \exp(-i4\pi x_a - i2\pi x_b)$
		[2, 1, 0]	5.257	$-J_2 \exp(i4\pi x_a + i2\pi x_b)$
		[-2, 0, 0]	6.070	$-J_3 \exp(-i4\pi x_a)$
		[2, 0, 0]	6.070	$-J_3 \exp(i4\pi x_a)$
		[-1, -2, 0]	5.257	$-J_2 \exp(-i2\pi x_a - i4\pi x_b)$
		[1, 2, 0]	5.257	$-J_2 \exp(i2\pi x_a + i4\pi x_b)$
		[-1, -1, 0]	3.035	$-J_1 \exp(-i2\pi x_a - i2\pi x_b)$
		[1, 1, 0]	3.035	$-J_1 \exp(i2\pi x_a + i2\pi x_b)$
		[-1, 0, 0]	3.035	$-J_1 \exp(-i2\pi x_a)$
		[1, 0, 0]	3.035	$-J_1 \exp(i2\pi x_a)$
		[-1, 1, 0]	5.257	$-J_2 \exp(-i2\pi x_a + i2\pi x_b)$
		[1, -1, 0]	5.257	$-J_2 \exp(i2\pi x_a - i2\pi x_b)$
		[0, -2, 0]	6.070	$-J_3 \exp(-i4\pi x_b)$
		[0, 2, 0]	6.070	$-J_3 \exp(i4\pi x_b)$
		[0, -1, 0]	3.035	$-J_1 \exp(-i\pi x_b)$
		[0, 1, 0]	3.035	$-J_1 \exp(i\pi x_b)$
1	2	[-1, -1, 0]	5.984	$-J_4 \exp(-i2\pi x_a - i2\pi x_b)$
		[-1, 0, 0]	5.984	$-J_4 \exp(-i2\pi x_a)$
		[0, 0, 0]	5.984	$-J_4$
1	3	[-1, -1, 0]	5.984	$-J_4 \exp(-i2\pi x_a - i2\pi x_b)$
		[0, -1, 0]	5.984	$-J_4 \exp(-i2\pi x_b)$
_	_	[0, 0, 0]	5.984	$-J_4$
2	3	[0, -1, 1]	5.984	$-J_4 \exp(-i2\pi x_b + i2\pi x_c)$
		[0, 0, 1]	5.984	$-J_4 \exp(i2\pi x_c)$
		[1, 0, 1]	5.984	$-J_4 \exp(i2\pi x_a + i2\pi x_c)$

^a The cell notation $[n_a, n_b, n_c]$ indicates the unit cell position given by the direct lattice vector $\mathbf{R} = n_a \mathbf{a} + n_b \mathbf{b} + n_c \mathbf{c}$. It is used to show the contribution that occurs between the [0, 0, 0] and $[n_a, n_b, n_c]$ cells. Thus, the notation [0, 0, 0] means the contribution that occurs within a unit cell. ^b The interactions between $\mu = 2$ and $\nu = 2$ and those between $\mu = 3$ and $\nu = 2$ are the same as those between $\mu = 1$ and $\nu = 1$.

of the bands $E_i(\mathbf{k})$ (i = 1, 2, ..., m), which occurs from the lowest-lying band $E_1(\mathbf{k})$. If we denote this particular \mathbf{k} point as \mathbf{k}_m , then the magnetic superstructure is described by ψ_1 - (\mathbf{k}_m) .

Because each unit cell of CuFeO₂ has three Fe³⁺ ions, there are three spin-basis functions $\sigma_{\mu}(\mathbf{k})$ ($\mu=1-3$) to consider. The pairs ($\mu-\nu$) of the spin sites (μ , $\nu=1-3$) leading to the spin-exchange interactions J_1 , J_2 , J_3 , and J_4 are listed in Table 3, whereas the nonzero contributions to the matrix elements $\xi_{\mu\nu}(\mathbf{k})$ from the various spin-exchange paths of CuFeO₂ are summarized in Table 4. Thus the nonzero matrix elements $\xi_{\mu\nu}(\mathbf{k})$ are given by

$$\begin{split} \xi_{11}(\mathbf{k}) &= \xi_{22}(\mathbf{k}) = \xi_{33}(\mathbf{k}) = -J_1 \{ 2\cos[2\pi(x_a + x_b)] + \\ 2\cos[2\pi x_a] + 2\cos[2\pi x_b] \} - J_2 \{ 2\cos[2\pi(2x_a + x_b)] + \\ 2\cos[2\pi(x_a + 2x_b)] + 2\cos[2\pi(x_a - x_b)] \} - \\ J_3 \{ 2\cos[4\pi(x_a + x_b)] + 2\cos[4\pi x_a] + 2\cos[4\pi x_b] \} \\ \xi_{12}(\mathbf{k}) &= -J_4 \{ \exp[-i2\pi(x_a - x_b)] + \exp[-i2\pi x_a] + 1 \} \\ \xi_{13}(\mathbf{k}) &= -J_4 \{ \exp[-i2\pi(x_a - x_b)] + \exp[-i2\pi x_b] + 1 \} \\ \xi_{23}(\mathbf{k}) &= -J_4 \{ \exp[i2\pi(x_a + x_c)] + \exp[i2\pi(-x_b + x_c)] + \\ \exp[i2\pi x_c] \} \end{split}$$

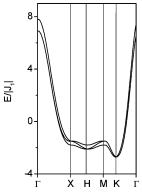


Figure 6. $E_i(\mathbf{k})$ vs \mathbf{k} plots calculated for $J_2/J_1 = J_3/J_1 = J_4/J_1 = 0.1$, where $\Gamma = (0, 0, 0)$, X = (1/2, 0, 0), M = (1/2, 1/2, 0), H = (1/2, 1/4, 0), and K = (1/3, 1/3, 0).

Table 5. Total Spin-Exchange Energies of a Single FeO₂ Layer for the Ordered Spin Arrangements Described by Some Special Positions in the Brillouin Zone

wave vector	energy per spin site
$\Gamma = (0, 0, 0)$	$-3J_1 - 3J_2 - 3J_3$
X = (1/2, 0, 0)	$J_1 + J_2 - 3J_3$
M = (1/2, 1/2, 0)	$J_1 + J_2 - 3J_3$
H = (1/2, 1/4, 0)	$J_1 - J_2 + J_3$
K = (1/3, 1/3, 0)	$3J_1/2 - 3J_2/2 + 3J_3/2$

Figure 6 shows a representative $E_i(\mathbf{k})$ vs \mathbf{k} plot calculated for the wave vector region $\Gamma - X - M - \Gamma$, where $\Gamma = (0, 0, 1)$ 0), X = (1/2, 0, 0), and M = (1/2, 1/2, 0). For this particular plot, we used $J_2/J_1 = J_3/J_1 = J_4/J_1 = 0.1$ to accentuate the characteristic features of the $E_i(\mathbf{k})$ vs \mathbf{k} plot. The three bands should be closer together than they appear in the plot because the values of J_2/J_1 , J_3/J_1 , and J_4/J_1 should be smaller than 0.1, according to our estimates in the previous section. The ordered spin arrangements of an isolated FeO₂ layer given by the wave vectors Γ , X, and M are shown in Figure 7. Along the line X-M, the energy minimum occurs at H =(1/2, 1/4, 0), which gives rise to the four-sublattice AF structure (Figure 2b) in each FeO₂ layer. Along the M $-\Gamma$ line, the minimum energy occurs at K = (1/3, 1/3, 0), which leads to the (1/3, 1/3) superstructure that has the noncollinear three-sublattice 120° arrangement (Figure 2a) in each FeO₂ layer. It is noticed that with the Heisenberg description, the (1/3, 1/3) superstructure is considerably more stable than the (1/2, 1/4) superstructure.

To probe the primary spin-exchange interactions responsible for the formation of the (1/2, 1/4) and (1/3, 1/3)superstructures, we evaluated the total spin-exchange interaction energies of the ordered spin structures given by the wave vector points Γ , X, M, H, and K (per FeO₂ layer per spin site). Our results are summarized in Table 5. In using these results, it should be recalled that $J_1 \ll J_2$, $J_3 < 0$, according to our spin dimer analysis in the previous section. Table 5 shows that the intralayer interactions J_2 and J_3 are essential for the occurrence of the (1/2, 1/4) superstructure because if $J_2 = J_3 = 0$, the four-sublattice AF structure would become degenerate with the (1/2, 0) superstructure at X and the (1/ 2, 1/2) superstructure at M. Furthermore, the (1/2, 1/4) superstructure can never become more stable than the (1/3, 1/3) superstructure within the scope of a Heisenberg model, because the energy difference between these two structures is determined primarily by the strongest AF interaction J_1 that defines the TLA.

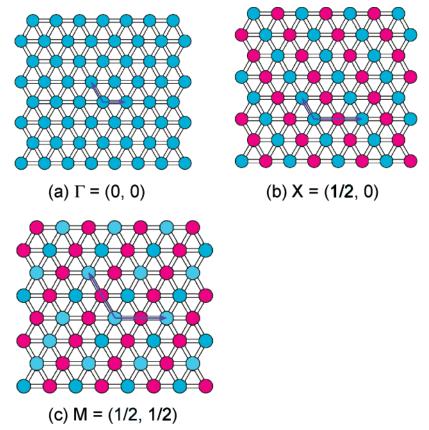


Figure 7. Ordered magnetic structures of an FeO₂ layer given by the wave vector points (a) Γ , (b) X, and (c) M.

4. Magnetic Moments of the Defect Ions Generated by Oxygen Nonstoichiometry

Our analyses in the previous two sections make it clear that a Heisenberg model cannot account for the occurrence of the collinear four-sublattice AF structure in CuFeO₂. Thus, we face a dilemma in understanding the magnetic properties of CuFeO2; an Ising model is required for explaining the ordered magnetic structures below $T_{\rm N1}$ and under a magnetic field, whereas a Heisenberg model explains the magnetic properties of $CuFeO_2$ above T_{N1} . This conceptual difficulty is resolved if nominally stoichiometric samples of CuFeO2 contain a small quantity of point defect ions that give rise to a uniaxial magnetic moment and hence induce the surrounding Fe³⁺ ions to orient their magnetic moments along the c axis. (It should be noted that the electrical properties of CuFeO₂ single crystals can be either n-type or p-type depending on the preparation methods,²⁴ the probable cause of which is oxygen nonstoichiometry.) The most likely defect ions present in the CuFeO₂ lattice would be the Fe²⁺ or Cu²⁺ ions resulting from oxygen nonstoichiometry. 12 In the following, we explore the plausibility of the above hypothesis.

As depicted in Figure 8a, an oxygen atom vacancy in CuFeO₂ generates three FeO₅ square pyramids. These square pyramids are only slightly different in structure from an ideal square pyramid (i.e., that resulting from an FeO₆ regular octahedron by removing one oxygen atom), because the FeO₆ octahedra of CuFeO₂ are almost regular in shape. For

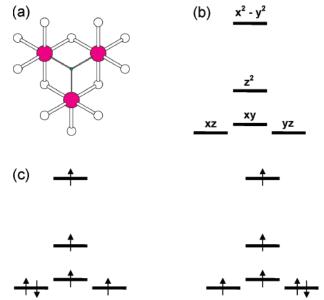


Figure 8. (a) Group of three FeO₅ square pyramids surrounding an oxygen atom vacancy (small green circle). (b) d-Block split pattern of an ideal FeO₅ square pyramid. (c) Two degenerate electron configurations of an ideal FeO₅ square pyramid containing Fe2+.

simplicity, it will be assumed that the FeO₅ square pyramids generated by an oxygen atom vacancy are ideal square pyramids. Our EHTB calculations show that the d-block levels of an ideal FeO₅ square pyramid are split as depicted in Figure 8b, where the local z axis is taken along the bond from the Fe to the apical O atom. Thus, as depicted in Figure 8c, the electronic ground state of an ideal FeO₅ square pyramid containing a high-spin Fe²⁺ (d⁶) ion is described by a linear combination of two degenerate electron configu-

⁽²⁴⁾ Dordor, P.; Chaminade, J.-P.; Wichanchai, A.; Marquestaut, E.; Doumerc, J.-P.; Pouchard, M.; Hagenmuller, P.; Ammar, A. J. Solid State Chem. 1988, 75, 105.

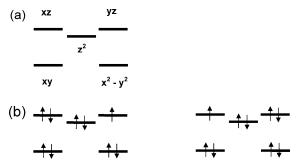


Figure 9. (a) d-Block split pattern of a linear O-Cu-O dumbbell. (c) Two degenerate electron configurations of a linear O-Cu-O dumbbell containing Cu²⁺.

rations, where one set of degenerate orbitals (i.e., d_{xz} and d_{vz}) has three electrons. In addition, a rotation around the 4-fold rotational axis interconverts the two orbitals. In the case of oxygen excess, some of the Cu⁺ ions in the linear two-coordinate sites would be oxidized to Cu²⁺ ions. Our EHTB calculations show that the d-block levels of a linear CuO₂ dumbbell are split as depicted in Figure 9a, where the local z axis is taken along the O-Cu-O axis. The d_{z^2} level lies slightly lower than the d_{xz} and d_{yz} levels because the mixing of the Cu 4s orbital strongly reduces the sigma antibonding between the Cu $3d_{z^2}$ and the O $2p_z$ orbitals. The ground electronic state of a CuO₂ dumbbell containing a Cu²⁺ (d⁹) ion is described by a linear combination of two degenerate electron configurations (Figure 9b) in which one set of degenerate orbitals (i.e., d_{xz} and d_{yz}) has three electrons, and a rotation around the O-Cu-O axis interconverts the two orbitals.

It is known 14 that a magnetic ion under a crystal field with *n*-fold ($n \ge 3$) rotational symmetry has a uniaxial magnetic moment along the n-fold rotational axis, if the ground state of the ion is described by a linear combination of two degenerate electron configurations in which one set of two degenerate orbitals has three electrons and if the orbitals $|L L_z|$ of the ion are eigenfunctions of the associated crystal-field Hamiltonian. These conditions are satisfied for the Fe²⁺ and Cu²⁺ ions of the CuFeO₂ lattice discussed above. Thus, in the case of oxygen deficiency, the Fe²⁺ ion located in an ideal FeO₅ square pyramid should have a uniaxial magnetic moment parallel to its 4-fold rotational axis. When all three FeO₅ square pyramids surrounding an oxygen atom vacancy are occupied by Fe²⁺ ions, the vector sum of their uniaxial magnetic moments is pointed along the c axis. In the case of oxygen excess, the Cu^{2+} ion of a CuO₂ dumbbell should have a uniaxial magnetic moment along the O-Cu-O axis, i.e., along the c axis.

The occurrence of uniaxial magnetic moments resulting from either the Fe²⁺ ions in the case of oxygen deficiency or the Cu²⁺ ions in the case of oxygen excess would induce the surrounding Fe³⁺ ions to orient their moments along the c axis, hence stabilizing the collinear four-sublattice AF structure below $T_{\rm NI}$. It is of interest to consider implications of this hypothesis. The uniaxial magnetic moment associated with the Fe²⁺ ions lies in the planes of the Fe³⁺ ions, whereas that associated with the Cu²⁺ ions lies outside the planes of the Fe³⁺ ions. Thus, the oxygen deficiency would exert a stronger driving force for the Fe³⁺ ions to orient their

magnetic moments along the c axis than would the oxygen excess. This explains why the phase-transition temperature $T_{\rm N2}$ is increased by oxygen deficiency ($\delta < 0$) but decreased by oxygen excess ($\delta > 0$).¹² Because the collinear foursublattice AF structure is not observed for CuCrO₂,15 one might speculate whether defect ions with uniaxial magnetic moments are absent in CuCrO₂. An oxygen-atom vacancy in CuCrO₂₊ δ (i.e., δ < 0) would generate Cr²⁺ (d⁴) ions in CrO₅ square pyramids. Such a Cr²⁺ ion cannot generate a uniaxial magnetic moment, because its high-spin groundstate electronic structure does not lead to a degenerate configuration according to the d-block energy levels of Figure 8b. However, the oxygen excess in CuCrO₂₊ δ (i.e., $\delta > 0$) would create Cu²⁺ ions with uniaxial magnetic moments, so that the four-sublattice AF structure might be observable in such a case. The collinear four-sublattice AF structure of CuFeO₂ is destroyed when only 2% of the Fe³⁺ ions are replaced with nonmagnetic Al3+ ions.18 This can be understood if the Al³⁺ substitution prevents oxygen nonstoichiometry.

5. Concluding Remarks

Our spin dimer analysis for CuFeO₂ shows that the intralayer interaction J_1 defining a TLA is stronger than the intralayer interactions J_2 and J_3 as well as the interlayer interaction J_4 by a factor of approximately 30 or greater. A Heisenberg model using these spin-exchange parameters predicts that the collinear four-sublattice AF structure is less stable than the noncollinear 120° spin arrangement predicted for a TLA. Thus we examined whether defect Fe²⁺ and Cu²⁺ ions of the CuFeO2 lattice generated by oxygen nonstoichiometry are responsible for the collinear spin alignment of the Fe³⁺ ions along the c axis below $T_{\rm N1}$. Our electronic structure analysis suggests that these defect ions give rise to magnetic moments pointing along the c axis, and hence provide a driving force for the surrounding Fe³⁺ ions to orient their moments along the c axis below $T_{\rm N1}$. As a consequence, an Ising model would be required for describing the magnetic structures of $CuFeO_2$ below T_{N1} despite the fact that the magnetic properties of high-spin Fe³⁺ ions are not uniaxial. Above T_{N1} , thermal agitation would negate the momentorienting effect of the defect ions so that a Heisenberg model would be required for describing the magnetic properties of CuFeO₂. For nonstoichiometric CuCrO_{2+ δ} samples, our hypothesis leads to the prediction that the collinear foursublattice AF structure will be present in the case of oxygen excess ($\delta > 0$) but absent in the case of oxygen deficiency (δ < 0). The presence of random point defects could also be the reason the phase transition to the collinear foursublattice AF structure at 11 K exhibits thermal hysteresis.

Acknowledgment. The research was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, U. S. Department of Energy, under Grant DE-FG02-86ER45259. K.-S. L. thanks The Catholic University of Korea for the 2004 Research Fund. R. K. K. thanks W. Schnelle (MPI-CPfS, Dresden) for helpful discussion.

CM052634G